
TOPIC 13: THE CURSE OF THE COVER OF SPORTS ILLUSTRATED

Before we study this topic, you should read the following article from the archives of Sports Illustrated
itself from January 2012: "That Old Black Magic." Sports Illustrated. January 21, 2002, 5061.
( The printed version of the article is attached ).

This entertaining article gives a number of anecdotal examples of the supposed curse and goes on to give
the results of the investigation into the curse carried out by the authors. The authors give an account of
a study they conducted by looking at the covers of 2,456 issues of Sports Illustrated, finding that 913 of
the subjects had suffered some verifiable misfortune compatible with their definition of misfortune. They
express surprise at the percentage of those featured who met with misfortune but do acknowledge that cause
and effect cannot be determined from the data. The authors also discuss a widespread preference in society
for superstitious and mystical explanations over statistical arguments and logical explanation.

A thorough scientific investigation of the topic would require a lot of time spent collecting data on all
of the athletes featured on the cover of Sports Illustrated. Rather than pursue this line of argument, we
will take the opportunity to explore some of the subtle points of probability that often lead us to misjudge
chance. We will discuss some common misconceptions about coincidence and ranking along with regression
to the mean, which is the most commonly cited explanation for the large proportion of magazine coverees
who fall to the hand of the curse. Hopefully this will serve to enable you to make your own judgements as
to whether 37.2% is an unexpectedly large number of cover subjects to meet with “misfortune”.

As a first step let us use our expertise to translate our question about the jinx into a question about condi-
tional probability, namely “is the probability of “misfortune” for an athlete given that he/she has
“just” appeared on the cover of sports illustrated greater than the probability of “misfortune”
for any athlete of the type that appears on the cover of Sports Illustrated?” At this point, you
will realize the answer to this question depends greatly on your definition of “misfortune’ and requires some
investigation into what qualifies an athlete, coach or member of the general public to appear on the cover of
Sports Illustrated.

1. Coincidence

As humans, our attention is often drawn to some events, while others go unnoticed. Certainly remarkable
coincidences have the power to captivate us and distort our perception of relative frequency and chance,
often leading us to attribute their occurrence to cause and effect or supernatural forces. In fact many athletes
link an unusually good performance with something unusual that happened at the time of the performance
or before, perhaps an item of clothing they were wearing during the exceptional performance or what they
had for breakfast beforehand. Often success is attributed to the unusual circumstances and from then on
the lucky socks are worn during each game or the lucky breakfast precedes it. Of course these rituals may
serve to boost the athlete’s confidence and improve performance, however, I suspect that their performance
statistics would be the same on average even without the aid of the lucky socks.

In addition to the danger of mistakenly attributing cause and effect in this way, we have a tendency to
underestimate the likelihood of some coincidences, causing us to attribute them to supernatural forces. The
most commonly quoted example of this is the birthday problem or birthday paradox. As it turns
out, if you have as few as 23 (randomly chosen) people in a room, the chance that at least two of them share
a birthday is slightly greater than 50%. With 50 randomly chosen people in a room, you are almost certain
to find two with the same birthday with the probability at 97%. We can arrive at this conclusion easily
using our calculation techniques from basic probability (see the link to wikipedia above).

Another apparently remarkable set of coincidences are those between the lives of US presidents
Abraham Lincoln and John F. Kennedy. Again, the number of these coincidences is easily explained
by the fact that people searching for any coincidence have tens of thousands of well documented life events
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http://www.si.com/vault/2002/01/21/317048/that-old-black-magic-millions-of-superstitious-readers--and-many-athletes--believe-that-an-appearance-on-sports-illustrateds-cover-is-the-kiss-of-death-but-is-there-really-such-a-thing-as-the-si-jinx
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https://www.psychologytoday.com/articles/200407/the-power-coincidence
http://en.wikipedia.org/wiki/Birthday_problem
http://en.wikipedia.org/wiki/Lincoln%E2%80%93Kennedy_coincidences_urban_legend
http://en.wikipedia.org/wiki/Lincoln%E2%80%93Kennedy_coincidences_urban_legend
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for each president to choose from. For example, the political careers of both presidents shared a span of
about 16 years which were a century apart; Lincoln from 1834 to 1865 and Kennedy from 1947 to 1963. If
we considered 100 political or personal events that might have occurred (relatively randomly) over the span
of 16 years for both presidents, for example; years when elected to some office, years when they became
involved in a war, years when they moved from one state to another, years when children were born, years
when family members passed away etc.. . For each of these events we get a pair of years, one for the
occurrence of the event for each president (for example if the event is when both presidents ended their term
in the House of Representatives, then we get a pair of years 1849 for Lincoln and 1953 for Kennedy). In a
conservative estimate of the probability that the years would coincide for any particular event, one might
imagine that the years for these events were randomly determined from the 16 year span and finding the
pair of years is akin to rolling a pair of (imaginary) 16 sided dice. Using the same reasoning as we did
with the experiment of rolling a pair of six sided dice, we get that the probability that the uppermost faces
would coincide each time the pair of 16 sided dice are rolled is 1/16. Thus we would expect about 6 or 7
coincidences from this exercise alone. Now throw in coinciding days of the year, names, birthplaces and life
events of family members, successors and assassins and it would be surprising if we did not get at least 20
coincidences.

Both of the above examples highlight the common mistake of confusing the probability of a particular
coincidence with the probability of some coincidence. The probability that at least one person out of twenty
three chosen randomly will have a birthday the same as mine is one minus the probability that all of their
birthdays are different from mine, 1− [(364)/(365)]23 ≈ .06. This is much smaller than the chances that some
two among them will share a birthday (approx .5). Similarly looking for any coincidence when examining
the lives of Abraham Lincoln and John F. Kennedy makes the discovery of such a coincidence much more
likely than if we were looking for a specific coincidence.

Getting back to the evidence offered for the curse in the article from Sports Illustrated itself, let us ignore
the anecdotal evidence lest we fall into the trap of having our minds swayed by the few but sometimes striking
examples. Let us instead try take a look at how wide the net has been cast for qualifying coincidences by
looking at the authors’ definition of what should be counted as a misfortune. The authors enumerated six
categories of misfortune:

(1) an individual slump,
(2) a team slump,
(3) an individual blunder or bad play,
(4) an individual injury or death,
(5) a bad loss or lousy performance by a team or individual,
(6) and a failure to win a title after having been featured during the postseason.
(7) They added a seventh category to accommodate miscellaneous calamities, like Nike’s stock plunge shortly

after CEO Phil Knight appeared on the cover in 1993.

The time frame within which the misfortune had to hit is described in a sport specific manner but not
exhaustively. Starting on the day the magazine hit the stands, the misfortune had to be relatively immediate:

(a) In baseball or basketball a shooting slump or losing streak had to set in within two weeks of a cover
appearance,

(b) In football, loss or lousy performance had to take place the next weekend,
(c) for Olympians, their showing at the games was compared to the medal each was forecast to win and

injuries were examined for the month following the cover appearance.

Although these categories seem to narrow the search for misfortunes, they cover a wide range of
possible coincidences. The category miscellaneous obviously covers any possible coincidence that might be
considered a misfortune and allows just about anything to be counted. It also appears that a player featured
on the cover of the magazine for any reason, breaking a record, or an exceptional personal performance, might
add to the list of misfortunes with an individual slump, a personal injury, a bad individual performance,
a loss by his/her team, a slump in his/her team’s performance, a failure by the individual to meet the
expectations of sports analysts or a failure by the individual’s team to meet expectations of sports analysts.
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Adding team losses, slumps and bad performance to the list of misfortunes opens the door to a much wider
range of qualifying coincidences. Often the top players in any given sport belong to different teams and
whenever two of the teams meet, one must lose. In addition, players who break records or have outstanding
individual performances do not always belong to one of the top teams in their league.

More recently, Sports Illustrated has produced double and triple issues, such as the ones show below for
the midseason NBA report, featuring three different players from three different teams. I’m not sure how the
authors’ dealt with these issues but it certainly increases the probability of a misfortune if multiple players
from different teams for the same sport are featured on the cover.

The above framework may give the illusion of setting up a scientific experiment (consider a cover and
search for a qualifying misfortune in the given time period following the date) and recording the outcome.
However the categories of outcomes (along with “no misfortune”) given do not constitute a sample space
since the categories overlap. This is evident from the fact that the percentage of misfortunes cited in the
various categories add to more than 100%.

Of the 2,456 covers, 913 featured a person who, or team that had suffered some verifiable misfortune or
loss, that is 37.2% of the covers looked at. We have :

(i) No misfortune : 62.8%.
(ii) Bad losses or lousy performance by a team [(5) and maybe (2)] : 19.6% (= 52.7% of 37.2%).

(iii) Decline in individual performance (1) : 16.59% (= 44.6% of 37.2%).
(iv) Bad loss or lousy performance by an individual (5) : 9.37% (25.2% of 37.2%).
(v) Postseason Failure (6) : 4.08% ( 13.4% of 37.2%).

(vi) Injury or death (4): 4.38% ( 11.8% of 37.2%).
(vii) Blunder or bad play (3): 1.67% (4.5% of 37.2%).

The fact that categories (1), (2) and (5) together account for 122.5% of covers with misfortunes recorded
implies that at least 22.5% of the covers associated with a misfortune have more than one associated mis-
fortune, which in turned means that categories (1), (2) and (5) overlap. Although this is not a violation
of truth and overlapping categories are common in media representation of statistics, they often lead to a
distortion of the perception of the outcomes on the part of the reader and make it impossible to determine
the exact percentage of outcomes in the intersection of the categories. The fact that a significant number of
the 52.7% of the bad losses or lousy performances by teams may have followed a cover that featured one of
the team members for an outstanding individual accomplishment makes the statistic much more believable.

2. Predictions

A number of the misfortunes cited involve a failure of the players or teams to meet with the expectations
of the editors and sports analysts for the magazine. A good deal of the anecdotal evidence given concerns
teams or players touted as the “best” in their sport. Bad or unexpected losses by teams or individuals
and postseason failure are categories of misfortune, and the performance of Olympians is compared to their
predicted medal showing. This leads us to examine two commonly discussed questions in sports; “Which
team/individual is the best in their sport?” and “Which team/individual is going to win a match?”. When
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debated among fans, the first question often has as many answers as it does debaters. What is often
surprising is that sports analysts also often disagree on the answers to both questions. The book “Who’s #
1?” [1] outlines a number of commonly used algorithms used to determine rankings in sport. Quite often, the
resulting rankings disagree on the order in which teams should be ranked. Even when rankings roughly agree,
the predictive accuracy of the algorithms vary from sport to sport and they are far from 100% accurate. In
fact assuming that either of these two questions has a definite answer is a mistake and makes us wonder
how many of the above listed “misfortunes” stem from random error in prediction?

2.1. Does a “Best” team or player exist in every sport and if so how doe we decide who is
best? In reality, we often find that there are a number of good teams and athletes with differing strengths.
We see below that each statistic from the NBA page for ESPN has a different player as the leader for that
statistic.

We also find that the team or athlete deemed to be the best by one algorithm is often different from
the team or athlete deemed to be the best by a different algorithm. The following image of rankings for 10
teams in college baseball taken from the website masseyratings.com maintained by K. Massey, shows much
variation in rankings.

In fact a theorem due to Kenneth Arrow shows that there is no perfect way to put all of these rankings
together to get a “best” team.

Thus the idea that there is always one athlete or team unanimously considered the “best” in any sport is
a flawed one and it should not surprise us that some teams, players or Olympians featured as the “best” in
their sport on the cover of Sports Illustrated fail to live up to the expectations due to errors in judgement
and prediction on behalf of the sports analysts. Even if everyone agrees on who should be considered to be

http://www.masseyratings.com/
http://en.wikipedia.org/wiki/Arrow%27s_impossibility_theorem


SI 5

currently the best in a sport, this does not guarantee that future performance will stay at the same level or
that losses are inconceivable. We will consider this in more depth in the next section on regression to the
mean.

2.2. How accurate are the “Best” prediction systems? We already have enough experience with
probability to know that prediction based on recent performance in sports such as American Football where
the number of games per season is relatively small will undoubtedly be prone to error. The level of accuracy
of predictions from the highly regarded ranking systems varies from system to system and from sport to
sport. There are several different measures of accuracy in the literature. A straightforward measure of
accuracy for a given ranking system in any given week of a tournament is given by the percentage of winners
to date which are ranked higher than their opponents by the most recent version of this ranking system.
A number of websites track the accuracy of ranking systems throughout a season. Among them Wobus
Sports and The Prediction Tracker. Surprisingly we find that 70-75% is the highest level of accuracy
for the best (current) algorithms using the above measure of accuracy. The computer rankings tend to have
a greater level of accuracy than polls such as the coaches poll which uses the judgement of insiders in the
sport to determine rankings. The algorithm which ranks highest in accuracy will also vary from week to
week. There are of course more sophisticated ways of measuring accuracy of rankings, but they are more
difficult to explain and I’m sure there is no “best” method of measuring accuracy of ranking systems :)

3. Regression to the Mean

A lack of understanding of regression to the mean is often cited as the main reason for a belief in the
jinx of the cover of sports Illustrated. In the case of Bernoulli trials, we have seen that random fluctuation
can lead to long runs of success’ in the data which does nothing to change the probability of failure in the
next trial. For example, if I flip a coin many times, a streak of 10 heads in a row does not change the fact
that the probability of a tail on the next coin flip is 1/2. As we saw above performance for any athlete or
team is measured by many performance statistics which vary from week to week for each player or team.
For example the completion percentage will vary for any quarterback from game to game as will the number
of passing yards. Regression to the mean refers to the fact that extreme observations of these
statistics for any given athlete or team are more likely to be followed by observations closer
to the average for the athlete/team than by extreme observations.

3.1. Distribution of Player Statistics. The graphs shown below show the distribution of the statistics
field goal percentage (X, Y on the left) and the number of points scored (Z, W on right) per game for two
NBA players, Michael Jordan and Scottie Pippen. The distributions were compiled using data from ESPN
for over 200 games collected by Peter Ulrickson, a graduate student at Notre Dame.
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From these pictures, which fit the profile of mound shaped distributions discussed in the last section, we
see that the mean and standard deviation for any given statistic will vary from player to player. In the
examples shown above, we have:

http://sports.vaporia.com/
http://sports.vaporia.com/
http://www.thepredictiontracker.com/
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• For X = FG% per game for M. Jordan, E(X) ≈ 0.48 and σ(X) ≈ 0.1.
• Y = FG% per game for S. Pippen, E(X) ≈ 0.46 and σ(X) ≈ 0.13.
• Z = points per game for M. Jordan, E(Z) ≈ 29.59 and σ(W ) ≈ 8.44.
• W = points per game for S. Pippen, E(W ) ≈ 19.67 and σ(X) ≈ 7.28.

We see that some players may play at a consistently high level throughout their career with a high average
and low standard deviation. On the other hand, some players may have relatively low career averages by
comparison with their peers, but may have enough variation in performance to reach high levels of play 20%
of the time or 10% of the time. These exceptional performances may be enough for them to surpass the
performance of their peers in the short term, but (because of the nature of expected values) their average
performance should regress to their overall average in the long term.

Lets suppose that X is some statistic which measures performance for a given athlete or team. In
fact ranking experts often combine statistics such as those shown above to get a single overall measure of
performance for the athlete. Lets assume that X is such a statistic for our given athlete or team with
mean µ = E(X) and standard deviation σ = σ(X). Lets also assume that for our given athlete or team,
the values of the random variable X observed have a distribution similar to the mound shaped distribution
shown below. Recall our empirical rule for mound shaped distributions in the last section, we know that the
observed values of a variable X with a mound shaped distribution are distributed (roughly) in the following
manner:

where µ = E(X) and σ = σ(X). For this athlete/team we will observe values of X that are above µ+ σ
about 16% of the time and below that value 84% of the time. This means that for any observation of X
above µ + σ, the probability that it will be followed by something less than µ + σ is 0.84. An exceptional
performance that results in an observation of X more than two standard deviations above the mean (above
µ+ 2σ) has a 95% chance of being followed by a decrease in performance. In fact, the more outstanding the
performance for the athlete, the greater the probability that it will be followed by a decrease in performance.
Dramatic decreases in performance are more likely for athletes or teams with high standard deviations.
Note Reasoning is similar for distributions with other shapes. No matter what shape the underlying
distribution of a statistic is the average over a sufficiently large number of independent trials has a mound
shaped distribution according to the Central Limit Theorem.

Example 3.1. The total quarterback rating is a statistic which gives a measure of the overall perfor-
mance of the quarterback for each game. It ranges from 0-100 with an average quarterback scoring 50.

http://en.wikipedia.org/wiki/Central_limit_theorem
http://espn.go.com/nfl/story/_/id/6833215/explaining-statistics-total-quarterback-rating
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(a) Let X be the quarterback rating for Quarterback A. Lets assume that X is a variable with a mound
shaped distribution with mean E(X) = 70 and standard deviation σ(X) = 9. Suppose that Quarterback
A has a quarterback rating above 85 for three games in a row, what is the probability that his quarterback
rating for the next game will be at or below 61?

(b) Let Y be the quarterback rating for Quarterback B. Lets assume that Y is a variable with a mound
shaped distribution with mean E(Y ) = 75 and standard deviation σ(X) = 5. Suppose that Quarterback B
has a quarterback rating above 85 for three games in a row, what is the probability that his quarterback
rating for the next game will be at or below 60?

3.2. Fluctuation around the mean. As mentioned above, it is difficult for the observer to distinguish be-
tween short term runs of good performance due to randomness and a long term improvement in performance
(which amounts to a shift in the density function for the player or team). For many athletes/teams excep-
tional performances due to random fluctuation in statistics have a very high probability of being followed
by a large decrease in performance. Athletes and teams with consistently high performances are less likely
to suffer a large decrease in performance after an outstanding performance. One would expect that those
athletes/teams with high and consistent levels of performance would have repeated appearances on the cover
of Sports Illustrated and their appearance would be less likely to be followed by a misfortune in the form
of a dramatic decrease in performance. On the other hand on would expect an individual or team with a
relatively high, but not exceptionally high average performance coupled with a large variance in performance
to make it to the cover of Sports Illustrated perhaps once in his/her/their career but with a high probability
of a dramatic decrease in performance shortly thereafter.

Example 3.2. Lets look at some data for NBA player Jeremy Lin who was featured on the cover of Sports
Illustrated (and many other magazines) twice in February 2012 after a period of exceptional performance
averaging over 25 points per game with the New York Knicks . The graph extends over a period from the
beginning of the 2011-2012 season to the present (2015). It uses the results of 186 consecutive games in which
he played collected from the ESPN website by Peter Ulrickson, a graduate student at Notre Dame. In the
graph on the left, we show a moving average, the average number of points scored per game for the previous
five games in which he played , starting with the fifth game in which he played in the 2011-2012 season on
Feb. 14 2012. On the right, we also have a moving average. We first calculated the number of points per
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minute for each game and then took the average for the previous 5 games starting on Feb. 14 2012. This
takes into account the amount of actual playing time he has had in each game, which varies considerably.

The average for the data graphed on the left is approximately 13.43 and the standard deviation is ap-
proximately 4.07. The average for the data graphed on the right is approximately 0.44 and the standard
deviation is approximately 0.103. We see that as time progresses the statistics fluctuate around the mean
with sharp increases and drops in the graph reflecting periods of poor performance followed by dramatic
increases in performance and vice versa. We see that most of the time the data is close to the mean (within
2 standard deviations) with a few exceptional periods performance followed by a regression to the mean.

If a player has a greater variance in performance, we can expect larger fluctuations around the mean as
demonstrated in the results of the following simulation:

Example 3.3. We used excel to simulate the quarterback rating for two hypothetical quarterbacks over the
course of 100 games. We assume that both quarterbacks, Quarterback 1 and Quarterback 2 had the same
average quarterback rating at 75. Quarterback 1 had standard deviation of 5 and Quarterback 2 had a higher
standard deviation of 10. We generated random values of the quarterback rating for each player for 100
games and then calculated the running average for the previous 5 games starting at the the fifth game as we
did with the data for Jeremy Lin above. Below we see the averages for both players plotted on the same graph
with the performance of Quarterback 1 shown in red and that and Quarterback 2 shown in blue.

We see that every now and then Quarterback 2 has an exceptional performance followed by a sharp drop
in performance, all due to random variation. On the other hand the changes in performance in the data for
Quarterback 1 are not so dramatic. Thus we see that large changes in performance are to be expected for
players who exhibit more variation in play and should not be considered a result of bad luck.
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4. conclusion

Lets see how the above pieces might fit together to explain the levels of “misfortune” cited in the study for
the cover subjects of Sports Illustrated. Lets consider the cover subject’s path to misfortune as a two step
process. The first step is being chosen by the editors to appear on the cover and the second is what happens
in the period following their appearance. Below I divide the subjects into distinct categories and then
attempt to estimate the proportions of cover subjects in each category and the (conditional) probability that
misfortune will befall them. It is not intended to be a scientific study, rather it is intended to demonstrate
that the proportion of misfortunes cited in the article could have occurred in an entirely reasonable way if
one bears in mind the points made above about regression to the mean, the inclusion of a wide range of
coincidences and the unreliability of predictions. You are encouraged to substitute your own probabilities
instead of mine if you think they are more fitting or if you wish to undertake a more scientific study of
magazine covers and those athletes/teams featured.

First, lets categorize the cover subjects into the following non overlapping categories:

• P = predicted to win a in the near future or claimed to be the best in their sport with the expectation
of winning in near future.

• RHPC = No predictions or claims of “best” involved, chosen for recent high performance in their
sport and fit in the category of consistent high performers(small variance).

• RHPI = No predictions or claims of “best” involved, chosen for recent high performance in their
sport and fit in the category of relatively large variance in performance.

• SE = something else

Next lets estimate the percentage of cover subjects that fall into each category. Unless one looks through
all of the covers, exact percentages are impossible. I have outlined how I made my estimates below and you
should feel free to substitute your own.

• P(10%): from browsing through covers for a few years, I estimate that 1 in 10 of the covers are
devoted to prediction or have claims of a team or individual being the best in their sport.

• RHPC (20%) : from searching on wikipedia for the number of subjects who had repeat appearances (I
assume some intersection between individual subjects and team subjects) I would suggest a ballpark
figure of 500 cover subjects out of the 2,500 or so to date appeared on the cover more than once and
most likely had a high level of consistency in performance. Again we are assuming that these are
not among those already counted in P above.

• RHPI (60%) : Assuming that the category SE is small, say 10% we will put the remainder of the
cover subjects in this category.

• SE(10%)

Now let’s estimate the probability of “misfortune” (M) for each category.

• P: Lets assume that the analysts at Sports Illustrated are among the best and that their predictions
are correct 75% of the time, this means that the probability of “misfortune” of the failed prediction
type for this category is 0.25. Of course this would increase if we added in team losses and injuries
etc...

• RHPC: these are the consistent athletes with low probabilities of a dramatic decrease in performance.
Lets assume a very conservative estimate of their probability of a noticeable decrease in performance
at 0.05. Their probability of “misfortune” which would also include team performance would be
somewhat higher than this.

• RHPI For these athletes and teams, they have a relatively high variance in performance. Being
conservative, lets assume that most are operating at an average of one standard deviation above
their own mean when appearing on the cover of Sports Illustrated. The (average) probability that
they will perform below their own mean in the next game is about 50% (exactly 50 for our mound
shaped symmetric distribution). Of course the probability that they will meet with misfortune
will increase if we throw in team performance and injury, however lets remain conservative with a
probability of misfortune at 0.5 for this category. ( Note that using variations in team performance
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to account for misfortunes also makes this category bigger and makes the probability of misfortune
greater).

• SE: Here I use statistics from everyday life. For any given exam about one student in 300 will have
some random injury, sickness or misfortune causing them to miss the exam. So I will estimate the
probability of “misfortune” for this category at about 1/(300) ≈ 0.003.

The following table shows the percentage of all cover subjects that would experience “misfortune” from
each category as a result of our somewhat conservative speculation:

Category Percentage of covers in Category Prob. Misfortune % misfortunes from category
P 10% 0.25 2.5%

RHPC 20% 0.05 1%
RHPI 60% 0.5 30%

SE 10% 0.003 0.03%
33.53%

The percentage of all cover subjects who are expected to meet with misfortune as a result of this speculation
sums to 33.53%. I could revise it to get 37.2%, but given that I have been conservative with the estimates
throughout, I do not find that 37.2% is an unnaturally high percentage of cover subjects to meet with
misfortune. In a more scientific study one could take a random sample of say 200 covers and use the data
to get better estimates for the percentages and probabilities above. One would also need to look at the
statistics for the cover subjects to determine variability of play to find the probability estimates for those in
the category RHPI and RHPC to complete the calculation. Hopefully this exercise has at least given you
some tools with which you can think logically about the “curse”.
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